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The oxidative burst, the rapid production of 02- and Hz02 by plant cells in response to pathogens and stressors, is a 
critical step in plant disease resistance and is controlled by several different elicitor-initiated signaling pathways. While 
different defense elicitors appear to activate disparate initial steps in signaling the oxidative burst, all of the elicitors 
tested thus far appear to stimulate pathways that converge on the same three core signaling intermediates: 1) the 
Ca2+oindependent activation of a mitogen-activated protein kinase (MAPK) family member, 2) the influx of Ca 2+ into 
the cytosol, deriving most critically from an internal compartment, and 3) the Ca2+-dependent activation of additional 
protein kinases including a second MAPK homologue and possibly calcium dependent protein kinases (CDPKs). Data 
from several recent reports are summarized to place these signaling events into a complete and updated model of 
signaling to the plant oxidative burst. 
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The oxidative burst is the rapid generation of super- 
oxide and hydrogen peroxide that is a defense strategy 
employed by plants during disease resistance (for reviews, 
see Baker and Orlandi, 1995; Blumwald et al., 1998; 
Bolwell et al., 1999; Grant and Loake, 2000; Wojtaszec, 
1997). These free-radical species may serve many func- 
tions in plant defense, including a direct role in oxidative 
microbial toxicity (Baker and Orlandi, 1995), and sig- 
naling roles in the initiation of several local and systemic 
downstream defense responses (Levine et al., 1994; 
Baker and Orlandi, 1995; Wojtaszec, 1997; Orozco- 
Cardenas and Ryan, 1999). Because of the central place 
of the oxidative burst in plant defense mechanisms and 
the obvious deleterious consequences of unchecked 
oxidant production, the oxidative burst is tightly con- 
trolled by multi-step signal transduction pathways that 
are integrated into other defense and stress signaling 
pathways. This review focuses on recent advances in 
the understanding of the interplay between cytosolic 
Ca 2§ fluxes and the activation of several different pro- 
tein kinases in the initiation of H~O2 biosynthesis. Evi- 
dence from recent reports is compiled to present a 
coherent and updated signaling model for the events 
leading from cellular recognition of elicitor stimuli to 
both Ca2+-dependent and independent protein kinase 
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activation and to cytoplasmic Ca 2§ entry, leading to the 
activation of oxidant synthesis. 

Overview of the Oxidative Burst Signal Transduc- 
tion Pathway 

The first step in signaling an oxidative burst response 
undoubtedly involves receptor recognition of different 
elicitor molecules followed by receptor-dependent 
reactions. The initial signaling intermediates induced 
by various oxidative burst elicitors are frequently very 
different. For example, the pathway initiated by oli- 
gogalacturonides appears to require G proteins (Leg- 
endre et al., 1992) and phospholipase C (Legendre et 
al., 1993) but not phospholipase A2 (Chandra et al., 
1996a), while an elicitor from the cell wall of Verticillium 
dahliae utilizes phospholipase A but not phospholipase 
C (Legendre et al., 1993; Chandra et al., 1996b). Even 
the initial sites of action may differ, as some elicitors 
appear to bind to sites on the plant cell surface (Rey- 
mond et al., 1995; Ligterink et al., 1997; Bourque et 
al., 1999; Lee et al., 2001), while others, including the 
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avrPto elicitor, may have to penetrate the plant cell to 
interact with its receptor (Scofield et al., 1996; Tang et 
al., 1996). 

However, while it is apparent that these initial steps 
in the burst pathway vary dramatically by elicitor, it is 
also clear that they must eventually converge on com- 
mon intermediates. One of the first common required 
signaling events, and thus a good candidate for a con- 
vergence point among the varied pathways, is the 
activation of protein kinases. A second common point 
in many pathways is ion fluxes. Evidence will be 
described later in this text that suggests that cytosolic 
calcium fluxes regulate some of the kinases involved 
in the oxidative burst. The activated kinases and cal- 
cium influx then modulate other cellular events, which 
presumably culminate in the activation of a Rac-depen- 
dent plasma membrane oxidase (Dwyer et al., 1996; 
Jabs et al., 1997; Bolwell et al., 2001 ; Romeis et al., 
1999; Sagi and Fluhr, 1998; Torres et al., 2002; Olmos 
et al., 2003). 

Calcium Fluxes in the Oxidative Burst Pathways 

Defense elic~r-adivaEt Ca 2+ pulses were fl~t recorded 
in 1991 in aequorin-transformed tobacco plants (Knight 
et al., 1991 ), and were then directly connected to the 
oxidative burst in 1997 (Chandra et al., 1997). Since 
the publication of those studies, we and others have 
found a firm causal relationship between the expres- 
sion of cytosolic Ca 2+ fluxes and the stimulation of 
the oxidative burst. Every oxidative burst elicitor thus 
far tested stimulates a Ca 2+ flux (in Nicot/ana ta~acum; 
Chandra et al., 1997, Cessna and Low, 2001a; and in 
Glycine max, Navazio et al., 2002), and several differ- 
ent Ca 2+ channel blockers invariably inhibit H202 
production (Tavernier et al., 1995; Bolwell et al., 
1999). Therefore, it appears that the requirement for 
cytosolic Ca 2+ fluxes in the stimulation of the burst is 
quite strict. 

Biochemical characterization of the cytosolic Ca 2+ 
increases activated in response to oxidative burst elic- 
itation in tobacco cells has provided substantial gains 
in answering two important questions. 1) What signal- 
ing events precede the Ca 2+ pulses? 2) Does the cel- 
lular source of an elicited Ca 2§ influx determine its 
efficacy in mediating the oxidative burst signal? 

Events Upstream of Ca 2+ Influx 

The Ca 2+ pulses induced by four different oxidative 
burst-initiating stimuli have been thoroughly studied 
with a large selection of pharmacological modulators 

of signal transduction (Cessna and Low, 2001a). The 
most potent inhibitors of the elicitor-induced Ca 2+ 
signals were serineJthreonine protein kinase inhibitors 
and anion channel blockers. Indeed, several reports 
point dearly to the involvement of protein kinases and 
anion channels in the burst pathway upstream of the 
requisite Ca 2+ pulses (Cessna and Low, 2001a; Lecou- 
riex et al., 2002; Navazio et al., 2002). The relationship 
between calcium fluxes and kinase activity will be dis- 
cussed in further detail later in this article. 

There are two possible explanations for the ability 
of anion channel blockers to inhibit a Ca 2+ flux. First, 
movement of anions across a membrane will generally 
lead to membrane depolarization, and thus blocking 
an anion flux could therefore prevent the depolariza- 
tion-dependent activation of voltage-regulated Ca 2+ 
channels and thereby inhibit Ca 2+ influx to the cytosol 
(Ward et al., 1995). Altemativel~ Ca 2+ movement across 
a membrane will quickly generate a reduced mem- 
brane potential, resul6ng in the rapid termination of Ca 2+ 
flow. Simultaneous movement of anions across the same 
membrane would alleviate this electrical blockade, and 
obstruction of this flow would then inhibit Ca 2+ 
movement also. Regardless of the mechanism, inhibi- 
tion of Ca 2+ movements by anion channel blockers is 
well established in the plant literature, especially in 
processes involving signal transduction (Ward et al., 
1995; Xing et al., 1997; Lecourieux et al., 2002). 

Local;Tat!on of the Required Ca 2+ Pulses to Release 
from In~acellular Compartments 

Ca 2+ does not readily diffuse within the cytosol, but 
rather, due to the large number of Ca 2+ binding proteins 
present, Ca 2+ remains localized near its sites of entry 
(Clapham, 1995). Thus, the compartment from which 
the Ca 2+ influx derives partially determines the speci- 
ficity encoded in the Ca 2+ signal (Sanders et al., 1999). 
By manipulating the content of both the internal and 
external pools of signaling-ready Ca 2+ with chelators 
or exogenous Ca 2+, and by the judicious use of selective 
Ca 2+ signaling inhibitors, we have determined that the 
release of Ca 2+ from an internal store, as opposed to 
the influx of Ca 2+ across the plasma membrane, is 
required for the activation of the oxidative burst (Cessna 
et al., 1998; Cessna and Low, 2001b). This conclu- 
sion appears to be generally true of the activation of 
the plant oxidative burst, because several different 
elicitors in more than one plant species appear to 
behave in the same manner. This identification that 
organellar Ca 2+ is the critical Ca 2+ pool for oxidative 
burst activation does not necessarily preclude the 
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involvement of externally-derived influx in all oxidative 
burst signaling pathways. In fact, several reports have 
monitored Ca 2+ pulses derived from the apoplast that 
are apparently required for the stimulation of H202 
production (Bhmwald et al., 1998). For example, using 
electro-physiological techniques, Gelli et al., 1997) and 
Zimmermann et al. (1997) have identified defense elic- 
itor-stimulated activation of plasma membrane Ca 2+ 
channels. Furthermore, inhibitors that block these 
channels (Gd 3+, La 3+) also blocked the resulting 
defense responses, suggesting that Ca 2+ influx across 
the plasma membrane is required for the activation of 
the oxidative burst (Gelli et al., 1997; Zimmermann 
et al., 1997; Orozco-Cardenas and Ryan, 1999). 
While at first reading it may seem difficult to reconcile 
all of the above data, some of which point toward the 
requirement of an externally-derived Ca 2+ influx, and 
some of which point to a requirement for internally- 
derived Ca 2+ release, the following explanation for 
the apparent discrepancies can be offered. First of all, 
cellular Ca 2+ fluxes rarely stem from a single source, 
but rather, entry through the plasma membrane can reg- 
ulate organellar Ca 2+ release, and the converse may 
also be true (Clapham, 1995; Sanders et al., 1999; 
Cessna and Low, 2001b). Thus, inhibition of Ca 2+ influx 
through a plasma membrane channel can alter flow 
from an internal Ca 2+ channel (for example, by block- 
ing Ca2+-induced Ca 2+ release, Clapham, 1995). In light 
of these considerations, externally-derived Ca 2+ fluxes 
may indirectly effect the activation of the oxidative 
burst, by altering the flow of Ca 2+ from the internal 
stores (Cessna and Low, 2001b). In conclusion, our data 
support a hypothesis that internal Ca 2+ release is required 
for the stimulation of the oxidative burst. However, 
more investigation in this area, including subcellular 
imaging of the pools tapped during elicitor stimulation 
and genetic identification of the Ca 2+ channels involved 
would provide much more conclusive information. 

Evidence for Kinase Involvement in Oxidative 
Burst Signaling 

Preliminary evidence for kinase involvement in the 
oxidative burst was first noted in radiolabeling and 
pharmacologic studies prior to identification of kinase 
activation. Elicitation of plant cells treated with 32p. 
phosphate leads to labeling of a number of proteins 
(Farmer et al., 1989; Felix et al., 1991; Chandra and 
Low, 1995), suggesting that kinases are somehow acti- 
vated during the process. Assuming an analogy with 
signaling pathways of the neutrophil oxidative burst, 
these novel phosphoproteins could conceivably be 

other kinases, members of the superoxide-generating 
oxidase complex itself, or proteins not involved in the 
burst. Phosphorylated proteins that have thus far 
been identified in elicitor-stimulated Arabidopsis are 
AtMPK6 (Nuhse et al., 2000), AtMPK4 (Huang et al., 
2000; Petersen et al., 2000), AtMPK3 (Kovtun et al., 
2000) and AtPhos43 (Peck et al., 2001) and Pti in 
tomato (Zhou et al., 1995); however, the role of these 
proteins in the oxidative burst is unknown at this 
point. 

Additional evidence for kinase participation has 
come from pharmacologic studies, where serine/thre- 
onine kinase inhibitors such as K-252a and staurosporine 
block oxidative burst stimulation in a dose-dependent 
manner (Schwake and Hager, 1992; Levine et al., 1994; 
Chandra and Low, 1995; MatJhieu et al., 1996). Because 
addition of these same inhibitors also causes rapid 
termination of a previously initiated burst, it can be 
further suggested that continuous phosphorylation is 
essential for maintenance of burst activity. Interestingly, 
protein phosphatase inhibitors can autologously activate 
the burst, even in the absence of elicitors (Felix et al., 
1994; Chandra and Low, 1995). 

More conclusive evidence for the role of phospho- 
rylation changes in the oxidative burst is provided by 
several reports that have monitored the in vivo activation 
of specific protein kinases. The first kinase demonstrated 
to participate in the oxidative burst was the resistance 
gene product, Pto. Tomato cell cultures transformed 
with Pto kinase displayed a prolonged two phase pro- 
duction of the oxidative burst in response to bacteria 
expressing the avrPto avirulence gene, whereas control 
cells lacking the Pro kinase expressed only the tran- 
sient first phase of the burst (Chandra et al., 1996a 
and b). However, even the cells that lacked Pto kinase 
were able to generate substantial quantities of oxidants 
in response to non-race-specific elicitors, suggesting 
that the Pto kinase communicates the burst signal only 
when activated by avrPto, leaving the task to other 
kinases to respond to non-host-specific pathogens. 

Mitogen-Activated Protein Kinase Participation in 
Oxidative Burst Signaling 

MAP kinases have been associated with a number 
of plant defense responses, including salicylic acid 
production, wounding, and the hypersensitive response 
(for reviews, see Zhang and Klessig, 2000 and 2001; 
and Jonak et al., 2002). Several different groups have 
measured two different MAPK-like protein kinase 
activities that are both likely required for oxidant pro- 
duction in soybean and tobacco (Zhang and Klessig, 
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1997; Cazale et al., 1999; Grant and Loake, 2000; 
Taylor et al., 2001). The two kinases are both activated 
in elicitor-treated cells with the same kinetic profile as 
H202 production, and their activation in vivo was 
sensitive to the same protein kinase modulators that 
abolish burst activity. Based on their substrate specifici- 
ties, their immunoprecipitation by MAPK selective 
antibodies, and their phosphorylation on threonine 
and tyrosine residues, it has been concluded that the 
two kinases are members of the MAP kinase family 
with molecular weights of around 44 and 47 kDa in 
soybean (Cazale et al., 1999; Taylor et al., 2001). Bio- 
chemical and genetic evidence indicates that the two 
soybean MAPK family members correspond to the 
tobacco Salicylic acid-Induced Protein Kinase (SIPK) 
or Glycine max Mitogen activated protein _~nase 1 
(GMK1) (Zhang and Klessig 1997; Taylor et al., 2001 ; 
Kim, 2002) and the Wounding-lnduced Protein Kinase 
(WlPK), or the Glycine max Mitogen activated protein 
Kinase 2 (GMK2) (Seo et al., 1995; Kim, 2002). 

Like all MAPK family members, SIPKGMK1 and 
WlPK-GMK2 are believed to be activated after dual 
phosphorylation on tyrosine and threonine residues 
residing in an auto-inhibitory loop that guards the 
mouth of the active site in the non-phosphorylated 
form of the enzyme. This activation reaction is cata- 
lyzed by MAPK kinases (MAPKKs), which themselves 
are activated by phosphorylation catalyzed by MAPKK 
kinases (MAPKKKs). A tobacco and a soybean MAPKK 
homologue which uses SIPK-GMK1 as a substrate have 
been identified (NtMEK2 in tobacco, and GMKKI in 
soybean; Yang et al., 2001; Kim, 2002). However, Yang 
et al. (2001) reported that the NtMEK2-SIPKIWIPK 
cascade is not involved in H202 production based on 
the data that transiently expressed NtMEK2 does not 
induce an oxidative burst. Furthermore, pharmaco- 
logical studies suggest MAP kinases are not involved 
(Romeis et al., 1999), but two other groups mani- 
fested the opposite behavior (Cazale et al., 1999; Taylor 
et al., 2001). At this point, it is unclear whether the 
difference arises from elicitor-specific pathways, species 
differences, experimental conditions or perhaps the 
activation of SIPK-GMKI and WIPK-GMK2 occurring 
downstream of hydrogen peroxide production. Obvi- 
ously, complete resolution of this issue will require 
evaluation of knockout mutants of the NtMEK2-SIPKI 
WIPK (GMKKI-GMKI/GMK2) cascade in whole plant 
studies of the oxidative burst. 

Interestingly, MAP kinases appear to be both upstream 
and downstream of oxidant production. A number of 
kinases show increased expression and/or activity in 
presence of hydrogen peroxide, including AtNDPK2 

(Moon et al., 2003). Both over-expression and sup- 
pression of SIPK yield cells susceptible to oxidative 
stress (Samuel and Ellis, 2002), and over-expression of 
SIPK also leads to the hypersensitive response in the 
absence of a stimulus. Furthermore, protein tyrosine 
phosphatases are inhibited by oxidant production, 
and this inhibition is sufficient to activate AtMPK6, a 
MAP kinase that may be involved in oxidant production 
(Gupta and Luan, 2003; Taylor et al., 2003), leading 
to a feed-forward mechanism. These results suggest 
that the kinases that induce the burst would normally 
maintain the oxidase in a constitutively active state if 
their substrates (or themselves) were not continuously 
dephosphorylated by more dominant phosphatases. 

There is little current information regarding SIPK- 
GMKI substrates important to the burst pathway. Two 
primary candidates would include anion or Ca 2+ chan- 
nels or their protein regulators, and/or the oxidant 
generating enzyme or enzyme complex or its regulators. 
Alternatively, additional effector proteins that are one 
or more signaling steps removed from trans-membrane 
ion movement or oxidant production may be the 
immediate substrates of SIPK-GMK1. Based on phar- 
macological considerations further discussed below, 
we have placed SIPK-GMKI and WIPK-GMK2 on an 
independent pathway, one branch leading to the burst 
by way of Ca 2+ influx and WIPK-GMK2 activation, and 
the other by way of as yet unidentified signaling inter- 
mediates. In this working model, both of the branches 
in the pathway are required for the induction of H202 
biosynthesis. While the details concerning its place- 
ment in this pathway await further experimentation, it 
can be determined now that SIPK-GMK1 activation is 
a required step in the burst pathway, residing inde- 
pendent from (or upstream of) Ca 2+ influx. 

lntgration of Calcium and Kinase Signals: Ca 2§ 
Dependent Protein ICinase Activation 

The integration of calcium and kinase signaling appears 
to occur in the middle of the kinase cascade. In studies 
where elicitor-stimulated calcium signaling was blocked, 
elicitor-induced activation of WlPK-GMK2 was inhib- 
ited, but activation of SIPK-GMK1 was insensitive to 
the same treatments (Hoyos and Zhang, 2000; Taylor 
et al., 2001). It was therefore concluded that SIPK- 
GMK1 activation is independent of, or precedes Ca 2§ 
influx in signaling the burst response, and that WlPK- 
GMK2 activation necessarily follows Ca 2§ fluxes (Cessna 
and Low, 2001a; Taylor et al., 2001). Also consistent 
with the placement of SIPK-GMK1 independent of 
the Ca 2+ pulse (Fig. 1) is the finding that SIPK-GMK1 
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Figure 1. Activation of the oxidative burst includes activa- 
tion of a kinase upstream of calcium release from an internal 
store, activation of SIPK-GMK1 through a calcium-indepen- 
dent pathwa~ activation of WIPK-GMK2 through a calcium 
dependent pathwa~ and activation of the oxidase and other 
downstream affectors. 

activity is directly sensitive to both k252a and stauro- 
sporine (Zhang et al., 2000; Taylor et al., 2001). In 
contrast, SIPK-GMK1 activity is not affected by prior 
treatments of the cells with the anion channel blockers 
or Ca 2+ channel blockers and modulators (Hoyos and 
Zhang, 2000; Taylor et al., 2001 ). Together, these data 
indicate that SIPK-GMK1 is activated independent of 
or upstream of both anion and calcium ion movement 
across a membrane (Fig. 1). 

There is currently little information on the nature of 
the cytosolic Ca2+-sensing protein that relays the Ca 2+ 
signal to the oxidant producing apparatus. Candidates 
include one or more of the many calmodulin isoforms 
expressed in plant cells, a CDPK, an EF-hand containing 
NADPH oxidase-like protein (Keller et al., 1998), a 
calcineurin-type protein such as SOS3 (Liu and Zhu, 
1998) or another Ca2+-binding enzyme or regulatory 
protein. While it is possible that a CDPK may be 
involved in the stimulation of the oxidative burst 
(Romeis et al., 2000), direct evidence for CDPK 
involvement is based on the coincident activation of a 
CDPK and H202 biosynthesis, and the sensitivity of 
both CDPK activation and H202 production to non- 
specific inhibitors such as W-7 (Romeis et al., 2001). 
Because W-7 is unsuccessful in inhibiting the oxida- 
tive burst in many plants (Taylor et al., 2001), it can 
be concluded that some other Ca2+-sensing protein 
may more commonly relay the signal to the burst 
machinery. 

Regardless of the means by which the calcium signal 
is recognized, it is apparent that protein kinase activa- 
tion not only precedes but also follows Ca 2+ influx in 

the pathway leading to oxidant production. The most 
carefully studied protein kinase that can conclusively 
be placed in the latter portion of the pathway is the 
above mentioned WIPK-GMK2. Like SIPK-GMK1, 
WIPK-GMIG?. is activated coincident with H202 pro- 
duction. However, in contrast to SIPK-GMK1, WIPK/ 
GMK2 activation is blocked by agents that inhibit elic- 
itor-stimulated Ca 2+ signaling. A second critical differ- 
ence between the two MAPK homologues is their direct 
sensitivity to the kinase inhibitors k252a and stauro- 
sporine. While both kinases are completely inhibited 
in k252a/staurosporine treated cells, SIPK/GMK1 but 
not WIPK/GMK2 is directly sensitive to the modula- 
tors when kinase activity is measured in vitro. This dif- 
ference further supports the possibility that SIPK/GMK1 
lies independent of (or upstream of) Ca 2+ influx and 
WIPK-GMK2 activation (Fig. 1). While Ca 2+ influxes are 
placed prior to GMK2 activation, there is at least one 
signaling event between the calcium flux and GMK2 
activation, as calcium is neither required for GMK2 
activation nor does it directly stimulate GMK2 activity. 
Little information is yet available on the nature of the 
substrates utilized by WIPK-GMK2 in the burst pathway. 
Presumably other regulatory proteins, or the oxidant- 
producing enzyme itself is activated by WIPK-GMK2- 
dependent phosphorylation. 

Model of the Integration of Ca z+ and Kinase Activity 

The simplest summary of the most current data is 
presented in Figure 1. Elicitors (or eliciting physical 
stimuli) are first perceived. Several different immediate 
responses to receptor activation are possible, including 
the direct activation of various protein kinases, and/or 
the activation receptor associated G-proteins. We 
hypothesize that while the pathways leading to the 
oxidative burst are initially varied, they eventually 
converge on the activation of SIPK-GMK1 and WIPK- 
GMK2, i.e., Ca2+-independent and Ca2+-dependent 
branches. Simultaneous signaling through both of these 
branches is required for initiation of the burst response. 

Evidence for such a signaling-junction is twofold. 
First, activation of H202 production in plant cells cannot 
reproducibly be achieved with Ca2+-selective iono- 
phores (e.g., ionomycin and A23187; Chandra et al., 
1997; Cessna and Low, 2001a), even though substantial 
Ca 2+ influx after ionophore treatment can be measured 
(Chandra et al., 1997). Thus, while cytosolic Ca 2+ 
influx is most definitely required for stimulation of the 
burst, as evidenced by the potent and universal inhi- 
bition of H202 production by Ca 2+ influx modulators, 
it does not appear to be sufficient for its activation. 
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This indicates that a parallel pathway must be acti- 
vated simultaneously. Furthermore, unlike what occurs 
after Ca 2+ channel or anion channel blocker treat- 
ments, inhibition by the protein kinase inhibitors k252a 
and staurosporine cannot be overcome by ionophore- 
mediated Ca 2+ entry (Cessna and Low, 2001a). It 
therefore seems likely that a kinase not only facili- 
tates H202 production by its activation of Ca 2+ entry, 
but must also be required for the activation of the 
Ca2+-independent parallel pathway. 

While this model accurately represents the current 
information available, it is quite possible that it is over 
simplified. For example, there may be additional links 
between SIPK/GMK1 and calcium fluxes or calcium 
fluxes and WlPK/GMK2 activation. Furthermore, the 
activation of the oxidase may require multiple inputs, 
e.g., calcium as well as kinase activation. Timing, 
localization, and exact concentration are probably all 
important in the integration and outcome of calcium/ 
kinase signaling pathways. Finall)~ it is likely that this 
pathway is intricately connected to other stress-response 
signal transduction pathways, as is obvious from cross- 
talk studies (reviewed in Bowler and Fluhr, 2000). 
Further studies combining genetic, proteomic, and 
imaging techniques are required to fully comprehend 
the mechanism of calcium and kinase signal integra- 
tion in the oxidative burst. 
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